Supplementary data for this paper are available from the IUCr electronic archives (Reference: OB1006). Services for accessing these data are described at the back of the journal.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Chan, T.-L., Poon, C.-D. \& Mak, T. C. W. (1986). Acta Cryst. C42, 897-900.
Imashiro, F., Oda, M., Iida, T., Yoshida, Z. \& Tabushi, I. (1976). Tetrahedron Lett. 17, pp. 371-374.
Imashiro, F., Saika, A., Yamada, H. \& Sera, A. (1981). Chem. Lett. pp. 247-250.
Itoh, T., Gotoh, K., Ishikawa, N., Hamaguchi, T. \& Kubo, M. (1996). J. Org. Chem. 61, 1867-1869.

Keehn, P. M. (1983). Cyclophanes, edited by P. M. Keehn \& S. M. Rosenfeld, Vol. I, pp. 69-238. New York: Academic Press.
Lai, Y. H. (1981). Heterocycles, 16, 1739-1754.
Mitchell, R. H. (1983). Cyclophanes, edited by P. M. Keehn, \& S. M. Rosenfeld, Vol. I, pp. 240-309. New York: Academic Press.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Pfisterer, H. \& Ziegler, M. L. (1983). Acta Cryst. C39, 372-375.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1360-1361

trans-(6-Bromo-2-cyclohexen-1-yl)pyridinium bromide

Xinghua Han, Ronald J. Baker and John Masnovi
Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA. E-mail: j.masnovi@popmail. csuohio.edu

(Received 6 January I999; accepted 30 March 1999)

Abstract

The title compound, $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}^{+} \cdot \mathrm{Br}^{-}$, was prepared by bromination of 1,3 -cyclohexadiene in the presence of stoichiometric amounts of bromine and pyridine. Bromine and pyridine are found to add by anti 1,2addition, with pyridine occupying the allylic position. The bromide resides relatively close [3.490 (1) A] to the covalent bromine, whereas it is 4.232 (5) \AA from the nearest nitrogen cation.

Comment

Several reports concerning the structure of the products of bromination of 1,3 -cyclohexadiene are in disagreement (Hassel \& Lunde, 1950; Heasley et al., 1973; Khedekar, 1997; McMillen \& Grutzner, 1994; Lund, 1950). The first-formed dibromocyclohexenes are unstable liquids which undergo rearrangements at room temperature. Therefore, the bromination was conducted in the presence of pyridine at low temperature, and afforded the title compound, (I). Its structure was determined in order to establish the stereochemistry of addition of nucleophiles during the initial steps of bromination of 1,3 -dienes. Because the nucleophile (pyridine) differs from the electrophile (bromine), the structure establishes the regiochemistry of the addition as well.

(I)

The structure shown in Fig. 1 demonstrates that the product is formed by anti 1,2-addition of the elements of bromine and pyridine across one of the double bonds of the diene. The pyridine attaches to the allylicC atom. The pyridinium moiety is essentially planar and resembles that found in other N-alkylpyridinium derivatives (van Havere et al., 1982), with relatively short (about $1.36 \AA$) carbon-carbon bonds and bond angles all near 120°. Bond distances and angles in the cyclohexene moiety are close to those in cyclohexene (Chiang \& Bauer, 1969). For example, C1, C2, C3 and C 4 are coplanar. Interior bond angles about the $\mathrm{C}=\mathrm{C}$ double bond average $123.1^{\circ}\left(123.5^{\circ}\right.$ in cyclohexene),

Br2

Fig. 1. ORTEPII (Johnson, 1976) representation showing the atomnumbering scheme with displacement ellipsoids at the 30% probability level.
rather than the expected 120°, and bond distances between C atoms with $s p^{3}$ hybridization average $1.508 \AA$ [being 1.515 (20) and 1.55 (4) \AA in cyclohexene].

The cyclohexene ring adopts a half-chair conformation with the 4 -bromine (Brl) equatorial. Interestingly, the bromide counter-ion closely approaches this bromine [3.490(1) $\dot{\mathrm{A}}$, with $\mathrm{Br}^{-} \ldots \mathrm{Br}-\mathrm{C}$ angle 164.7 (2) ${ }^{\circ}$]. This distance is about $0.3 \AA$ smaller than a non-bonded contact expected between bromide and bromine, with radii about 1.95 and $1.85 \AA$, respectively (Huheey et al., 1993; Shannon, 1976; Brock, 1980). Much larger distances [4.232 (5) and 4.414 (5) Å] are observed between the bromide and the two nearest nitrogen cations. Unfavorable steric interactions between the bromide and H atoms, as well as the covalent bromine, may inhibit closer approach between the bromide and the pyridinium nitrogen. Thus, H3, H4, H7 and H8 exhibit the closest non-bonded $\mathrm{Br}^{-} \ldots \mathrm{H}$ distances (less than $3 \AA$). The dihedral angle between the plane of the pyridine and the $\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ plane is $109 .(4)^{\circ}$ and the torsion angle C7-N1-C3-C2 is $133.9(11)^{\circ}$. Thus approach to N 1 is occluded by $\mathrm{Br} 1, \mathrm{H} 4$ and H 2 above and below the plane of the pyridine ring, and by $\mathrm{H} 3, \mathrm{H} 7$ and H 11 in the plane of the ring.

Experimental

The title compound was prepared by addition of one equivalent of bromine and one equivalent of pyridine to 1,3 -cyclohexadiene in 1:1 $\mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CCl}_{4}$ at 203 K . Crystals spontaneously deposited on standing, and were collected by filtration at room temperature.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=319.04$
Monoclinic
$P 2_{1} / n$
$a=6.9550(8) \AA$
$b=14.4941(11) \AA$
$c=12.2793(8) \AA$
$\beta=101.523$ (7) ${ }^{\circ}$
$V=1212.88(18) \AA^{3}$
$Z=4$
$D_{x}=1.747 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Nonius CAD-4 diffractom-

eter

ω scans
Absorption correction: empirical (ABSORP in
NRCVAX; Gabe et al., 1989)
$T_{\text {min }}=0.182, T_{\text {max }}=0.394$
4585 measured reflections
2155 independent reflections

Mo $K \alpha$ radiation
$\lambda=0.70930 \AA$
Cell parameters from 25 reflections
$\theta=6.0-12.0^{\circ}$
$\mu=6.65 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate cut from long needle $0.42 \times 0.24 \times 0.14 \mathrm{~mm}$ Colorless

1494 reflections with
$I_{\text {net }}>2 \sigma\left(I_{\text {net }}\right)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=25.02^{\circ}$
$h=0 \rightarrow-8$
$k=-17 \rightarrow 17$
$l=-14 \rightarrow 14$
3 standard reflections frequency: 120 min intensity decay: 3.4%

Refinement

Refinement on $F \quad w=1 /\left[\sigma^{2}(F)+0.0002 F^{2}\right]$
$R=0.045$
$w R=0.041$
$S=1.78$
1492 reflections
127 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.85 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Br}-\mathrm{C} 4$	$1.936(6)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.495(9)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.500(7)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.512(8)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.320(10)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.508(9)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.459(11)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.503(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$123.7(7)$	$\mathrm{Br}-\mathrm{C} 4-\mathrm{C} 3$	$111.3(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.5(6)$	$\mathrm{Br} 1-\mathrm{C} 4-\mathrm{C} 5$	$110.7(5)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$109.9(5)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$110.6(5)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$109(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$109.5(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$111.2(5)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$113.3(6)$

H atoms were calculated at idealized positions and were refined with positional parameters and displacement coefficients riding on the C atoms to which they are attached, $\mathrm{C}-\mathrm{H} 0.96$ (alkene and pyridine), 0.98 (methylene) or $1.00 \AA$ (methine). H atom U values were set $0.01 \AA^{\circ}$ larger than $U_{\text {iso }}$ for the respective C atoms.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1993). Cell refinement: CAD-4-PC Software. Data reduction: DATRD2 in NRCVAX (Gabe et al., 1989). Program(s) used to solve structure: SOLVER in NRCVAX. Program(s) used to refine structure: LSTSQ in NRCVAX. Molecular graphics: NRCVAX. Software used to prepare material for publication: TABLES in NRCVAX (January 1994 version).

The authors thank the CSU College of Graduate Studies for support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1193). Services for accessing these data are described at the back of the journal.

References

Brock, C. P. (1980). Acta Cryst. B36, 968-971.
Chiang, J. F. \& Bauer, S. H. (1969). J. Am. Chem. Soc. 91, 1898-1901.
Enraf-Nonius (1993). CAD-4-PC Software. Version 1.2. EnrafNonius, Delft, The Netherlands.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Hassel, O. \& Lunde, K. (1950). Acta Chem. Scand. 4, 1597-1606.
Havere, W. van, Lenstra, A. T. H., Geize, H. J., van den Berg, G. R. \& Benschop, H. P. (1982). Acta Cryst. B38, 469-472.
Heasley, G. E., Heasley, V. L., Manatt, S. L., Day, H. A., Hodges, R. V., Kroon, P. A., Redfield, D. A., Rold, T. L. \& Williamson, D. E. (1973). J. Org. Chem. 38, 4109-4117.

Huheey, J. E., Keiter, E. A. \& Keiter, R. L. (1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. New York: Harper-Collins.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Khedekar, R. N. (1997). MS thesis, Cleveland State University, USA. Lund, E. W. (1950). Acta Chem. Scand. 4, 1109-1118.
McMillen, D. W. \& Grutzner, J. B. (1994). J. Org. Chem. 59, 45164528.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.

